Regularized Least Square Regression with Unbounded and Dependent Sampling

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Regularized Least Square Regression with Unbounded and Dependent Sampling

and Applied Analysis 3 Theorem 4. Suppose that the unbounded hypothesis with p > 2 holds, L−r K f ρ ∈ L 2 ρX (X) for some r > 0, and theα-mixing coefficients satisfy a polynomial decay, that is, α l ≤ bl −t for some b > 0 and t > 0. Then, for any 0 < η < 1, one has with confidence 1 − η, 󵄩 󵄩 󵄩 󵄩 󵄩 fz,γ − ρ 󵄩 󵄩 󵄩 󵄩 󵄩ρX = O(m −θmin{(p−2)t/p,1} (logm)1/2) , (13) where θ is given by θ = { { { { { {...

متن کامل

Learning Rates of Least-Square Regularized Regression

This paper considers the regularized learning algorithm associated with the leastsquare loss and reproducing kernel Hilbert spaces. The target is the error analysis for the regression problem in learning theory. A novel regularization approach is presented, which yields satisfactory learning rates. The rates depend on the approximation property and the capacity of the reproducing kernel Hilbert...

متن کامل

Error analysis of regularized least-square regression with Fredholm kernel

Learning with Fredholm kernel has attracted increasing attention recently since it can effectively utilize the data information to improve the prediction performance. Despite rapid progress on theoretical and experimental evaluations, its generalization analysis has not been explored in learning theory literature. In this paper, we establish the generalization bound of least square regularized ...

متن کامل

Regularized Least Square Regression with Spherical Polynomial Kernels

This article considers regularized least square regression on the sphere. It develops a theoretical analysis of the generalization performances of regularized least square regression algorithm with spherical polynomial kernels. The explicit bounds are derived for the excess risk error. The learning rates depend on the eigenvalues of spherical polynomial integral operators and on the dimension o...

متن کامل

Regularized Latent Least Square Regression for Cross Pose Face Recognition

Pose variation is one of the challenging factors for face recognition. In this paper, we propose a novel cross-pose face recognition method named as Regularized Latent Least Square Regression (RLLSR). The basic assumption is that the images captured under different poses of one person can be viewed as pose-specific transforms of a single ideal object. We treat the observed images as regressor, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Abstract and Applied Analysis

سال: 2013

ISSN: 1085-3375,1687-0409

DOI: 10.1155/2013/139318